Displaying 61 – 80 of 128

Showing per page

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

On splitting up singularities of fundamental solutions to elliptic equations in ℂ2

T. Savina (2007)

Open Mathematics

It is known that the fundamental solution to an elliptic differential equation with analytic coefficients exists, is determined up to the kernel of the differential operator, and has singularities on characteristics of the equation in ℂ2. In this paper we construct a representation of fundamental solution as a sum of functions, each of those has singularity on a single characteristic.

On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.

Mokhtar Kirane, Mahmoud Qafsaoui (2002)

Revista Matemática Complutense

We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧  ut + Ltu = a∇u   on Rnx(0,∞)⎩  u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...

Currently displaying 61 – 80 of 128