Existence of positive entire solutions of semilinear elliptic equations on .
We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in and b(x,u₀) ∈ L¹(Ω).
We consider the Fourier first boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations. To prove the existence and uniqueness of solution, we apply a monotone iterative method using J. Szarski's results on differential-functional inequalities and a comparison theorem for infinite systems.
We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration , gradient of concentration and the chemical potential . The existence is shown using a newly developed generalization of gradient...
This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...