Local existence of classical solutions to the well-posed Hele-Shaw problem.
We prove the local in time existence of solutions for an aggregation equation in Besov spaces. The Fourier localization technique and Littlewood-Paley theory are the main tools used in the proof.
We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data , and for and any . The initial regularity of the micro-rotational velocity is weaker than velocity of the fluid .
Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set . Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization of the principal part is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for . Under additional assumptions must be locally hyperbolic.
We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation We then give conditions for the convergence, as , of the solution of the evolution equation to its stationary state.