Displaying 661 – 680 of 1607

Showing per page

Linear-quadratic optimal control for the Oseen equations with stabilized finite elements

Malte Braack, Benjamin Tews (2012)

ESAIM: Control, Optimisation and Calculus of Variations

For robust discretizations of the Navier-Stokes equations with small viscosity, standard Galerkin schemes have to be augmented by stabilization terms due to the indefinite convective terms and due to a possible lost of a discrete inf-sup condition. For optimal control problems for fluids such stabilization have in general an undesired effect in the sense that optimization and discretization do not commute. This is the case for the combination of streamline upwind Petrov-Galerkin (SUPG) and pressure...

Liouville type theorem for solutions of linear partial differential equations with constant coefficients

Akira Kaneko (2000)

Annales Polonici Mathematici

We discuss existence of global solutions of moderate growth to a linear partial differential equation with constant coefficients whose total symbol P(ξ) has the origin as its only real zero. It is well known that for such equations, global solutions tempered in the sense of Schwartz reduce to polynomials. This is a generalization of the classical Liouville theorem in the theory of functions. In our former work we showed that for infra-exponential growth the corresponding assertion is true if and...

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

Localizations of partial differential operators and surjectivity on real analytic functions

Michael Langenbruch (2000)

Studia Mathematica

Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set Ω n . Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization P m , Θ of the principal part P m is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for P m , Θ . Under additional assumptions P m must be locally hyperbolic.

Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations

Albert J. Milani, Hans Volkmer (2011)

Applications of Mathematics

We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation u t t + 2 u t - a i j ( u t , u ) i j u = f corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation - a i j ( 0 , v ) i j v = h . We then give conditions for the convergence, as t , of the solution of the evolution equation to its stationary state.

Currently displaying 661 – 680 of 1607