Displaying 61 – 80 of 526

Showing per page

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...

Breakdown in finite time of solutions to a one-dimensional wave equation.

Mokhtar Kirane, Salim A. Messaoudi (2000)

Revista Matemática Complutense

We consider a special type of a one-dimensional quasilinear wave equation wtt - phi (wt / wx) wxx = 0 in a bounded domain with Dirichlet boundary conditions and show that classical solutions blow up in finite time even for small initial data in some norm.

Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness

Jarmila Ranošová (1996)

Commentationes Mathematicae Universitatis Carolinae

Let T be a positive number or + . We characterize all subsets M of n × ] 0 , T [ such that inf X n × ] 0 , T [ u ( X ) = inf X M u ( X ) i for every positive parabolic function u on n × ] 0 , T [ in terms of coparabolic (minimal) thinness of the set M δ = ( x , t ) M B p ( ( x , t ) , δ t ) , where δ ( 0 , 1 ) and B p ( ( x , t ) , r ) is the “heat ball” with the “center” ( x , t ) and radius r . Examples of different types of sets which can be used instead of “heat balls” are given. It is proved that (i) is equivalent to the condition sup X n × + u ( X ) = sup X M u ( X ) for every bounded parabolic function on n × + and hence to all equivalent conditions given in the article [7]....

Currently displaying 61 – 80 of 526