New Liouville theorems for linear second order degenerate elliptic equations in divergence form
Page 1
Luisa Moschini (2005)
Annales de l'I.H.P. Analyse non linéaire
Ancona, A., Helffer, B., Hoffmann-Ostenhof, T. (2004)
Documenta Mathematica
Giovanni Alessandrini (1994)
Commentarii mathematici Helvetici
N. Kutev (1991)
Archivum Mathematicum
Mokhtar Kirane, Salim Messaoudi (2002)
Annales Polonici Mathematici
We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
C. Bandle, L.A. Peletier (1988)
Mathematische Annalen
Marco Biroli (1985)
Commentationes Mathematicae Universitatis Carolinae
Guedda, Mohammed (2001)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Čupr, Karel (1945)
Page 1