Page 1

Displaying 1 – 9 of 9

Showing per page

Hardy's uncertainty principle, convexity and Schrödinger evolutions

Luis Escauriaza, Carlos E. Kenig, G. Ponce, Luis Vega (2008)

Journal of the European Mathematical Society

We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolutions.

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Homogenization of monotone parabolic problems with several temporal scales

Jens Persson (2012)

Applications of Mathematics

In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and...

Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian

Jamel El Kamel, Chokri Yacoub (2005)

Annales mathématiques Blaise Pascal

In this paper we consider the modified wave equation associated with a class of radial Laplacians L generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra c -function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of...

Currently displaying 1 – 9 of 9

Page 1