Page 1

Displaying 1 – 10 of 10

Showing per page

Instability of oscillations in cable-stayed bridges

Josef Malík (2005)

Applications of Mathematics

In this paper the stability of two basic types of cable stayed bridges, suspended by one or two rows of cables, is studied. Two linearized models of the center span describing the vertical and torsional oscillations are investigated. After the analysis of these models, a stability criterion is formulated. The criterion expresses a relation between the eigenvalues of the vertical and torsional oscillations of the center span. The continuous dependence of the eigenvalues on some data is studied and...

Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension

Frank Merle, Hatem Zaag (2009/2010)

Séminaire Équations aux dérivées partielles

We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution u ( x , t ) , the graph x T ( x ) of its blow-up points and 𝒮 the set of all characteristic points and show that 𝒮 is locally finite. Finally, given x 0 𝒮 , we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that T ( x ) forms a...

Currently displaying 1 – 10 of 10

Page 1