Displaying 181 – 200 of 341

Showing per page

On the well-posedness of some optimal control problems

Augusto Visintin (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano problemi di controllo ottimale con una dipendenza non lineare tra il controllo e lo stato. Si mostra come in certi casi la continuità di tale dipendenza, quindi la buona posizione nel senso di Tychonov, è connessa alla forma del funzionale costo. In particolare si esamina un problema di Stefan a due fasi con controllo distribuito nel termine di sorgente.

Parabolic differential-functional inequalities in viscosity sense

Krzysztof Topolski (1998)

Annales Polonici Mathematici

We consider viscosity solutions for second order differential-functional equations of parabolic type. Initial value and mixed problems are studied. Comparison theorems for subsolutions, supersolutions and solutions are considered.

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander.

Partial exact controllability of a nonlinear system.

A. K. Nandakumaran, R. K. George (1995)

Revista Matemática de la Universidad Complutense de Madrid

In this article, we prove the partial exact controllability of a nonlinear system. We use semigroup formulation together with fixed point approach to study the nonlinear system.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Currently displaying 181 – 200 of 341