The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study here the water waves problem for uneven bottoms in a highly nonlinear regime where
the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known
that, for such regimes, a generalization of the KdV equation (somehow linked to
the Camassa-Holm equation) can be derived and justified [Constantin and Lannes,
Arch. Ration. Mech. Anal. 192 (2009) 165–186] when the bottom is
flat. We generalize here this result
with a new class of equations taking into account...
The oriented movement of biological cells or organisms in response to a chemical gradient
is called chemotaxis. The most interesting situation related to self-organization
phenomenon takes place when the cells detect and response to a chemical which is secreted
by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many
particularized models have been proposed to describe the aggregation phase of this
process. Most of...
We study vortices for solutions of the perturbed Ginzburg–Landau equations where is estimated in . We prove upper bounds for the Ginzburg–Landau energy in terms of , and obtain lower bounds for in terms of the vortices
when these form “unbalanced clusters” where .
These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena
occurring in this flow, including...
We deduce from the first part of this paper [S1] estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow us to study various phenomena occurring in this flow, including vortex collisions; they allow in particular extending the dynamical law of vortices past collision times.
Currently displaying 1 –
5 of
5