Macroscopic limit of Vlasov type equations with friction
This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.
In this Note we consider the following problem where is a bounded smooth starshaped domain in , , , , and . We prove that if is a solution of Morse index than cannot have more than maximum points in for sufficiently small. Moreover if is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for sufficiently small.
We consider a mesoscopic model for phase transitions in a periodic medium and we construct multibump solutions. The rational perturbative case is dealt with by explicit asymptotics.
We consider a mesoscopic model for phase transitions in a periodic medium and we construct multibump solutions. The rational perturbative case is dealt with by explicit asymptotics.
In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres . Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence...
In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective...
Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form . It is shown, under certain structure assumptions on the random vector field and the random map , that the sequence of solutions converges in the sense of G-convergence of parabolic operators to the solution of the homogenized problem .