Page 1 Next

Displaying 1 – 20 of 57

Showing per page

The boundary behavior of a composite material

Maria Neuss-Radu (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ε in the energy norm.

The boundary behavior of a composite material

Maria Neuss-Radu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ε in the energy norm.

The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model

Shin-Ichiro Ei, Tohru Tsujikawa (2009)

Kybernetika

Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in 2 and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...

The elliptic problems in a family of planar open sets

Abdelkader Tami (2019)

Applications of Mathematics

We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions...

The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations

Bhagat Singh (2000)

Czechoslovak Mathematical Journal

Necessary and sufficient conditions have been found to force all solutions of the equation ( r ( t ) y ' ( t ) ) ( n - 1 ) + a ( t ) h ( y ( g ( t ) ) ) = f ( t ) , to behave in peculiar ways. These results are then extended to the elliptic equation | x | p - 1 Δ y ( | x | ) + a ( | x | ) h ( y ( g ( | x | ) ) ) = f ( | x | ) where Δ is the Laplace operator and p 3 is an integer.

The internal stabilization by noise of the linearized Navier-Stokes equation

Viorel Barbu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

One shows that the linearized Navier-Stokes equation in 𝒪 R d , d 2 , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V ( t , ξ ) = i = 1 N V i ( t ) ψ i ( ξ ) β ˙ i ( t ) , ξ 𝒪 , where { β i } i = 1 N are independent Brownian motions in a probability space and { ψ i } i = 1 N is a system of functions on 𝒪 with support in an arbitrary open subset 𝒪 0 𝒪 . The stochastic control input { V i } i = 1 N is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium...

The internal stabilization by noise of the linearized Navier-Stokes equation*

Viorel Barbu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

One shows that the linearized Navier-Stokes equation in 𝒪 R d , d 2 , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V ( t , ξ ) = i = 1 N V i ( t ) ψ i ( ξ ) β ˙ i ( t ) , ξ 𝒪 , where { β i } i = 1 N are independent Brownian motions in a probability space and { ψ i } i = 1 N is a system of functions on 𝒪 with support in an arbitrary open subset 𝒪 0 𝒪 . The stochastic control input { V i } i = 1 N is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium solution. ...

Currently displaying 1 – 20 of 57

Page 1 Next