singular limit for relaxation and viscosity approximations of extended traffic flow models.
We study the decay in time of the spatial -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.
We prove the --time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the --time decay estimates.
We consider the initial-value problem for a linear hyperbolic parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove time decay estimates for the solution of the associated linear Cauchy problem.
Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle...
Two asexual density-dependent population dynamics models with age-dependence and child care are presented. One of them includes the random diffusion while in the other the population is assumed to be non-dispersing. The population consists of the young (under maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both models are decomposed into the sum of two terms. The first presents death rate by the natural causes while the other describes the environmental...
This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.