Displaying 641 – 660 of 920

Showing per page

Solutions in Gevrey spaces of partial differential equations with constant coefficients

Lamberto Cattabriga (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dà una condizione sufficiente per la esistenza di una soluzione in uno spazio di Gevrey Γ d ( 𝐑 𝐧 ) , d razionale 1 , n 2 , di una equazione lineare a derivate parziali a coefficienti costanti P ( D ) u = f , quando f Γ d ( 𝐑 𝐧 ) . La dimostrazione completa dei risultati ottenuti è contenuta in una nota dell’autore in corso di pubblicazione su "Astérisque".

Some models of Cahn-Hilliard equations in nonisotropic media

Alain Miranville (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive in this article some models of Cahn-Hilliard equations in nonisotropic media. These models, based on constitutive equations introduced by Gurtin in [19], take the work of internal microforces and also the deformations of the material into account. We then study the existence and uniqueness of solutions and obtain the existence of finite dimensional attractors.

Some theorems of Phragmen-Lindelof type for nonlinear partial differential equations.

Ramón Quintanilla (1993)

Publicacions Matemàtiques

The present paper studies second order partial differential equations in two independent variables of the form Div(ρ1|u,1|n-1u,1, ρ2|u,2|n-1u,2) = 0. We obtain decay estimates for the solutions in a semi-infinite strip. The results may be seen as theorems of Phragmen-Lindelof type. The method is strongly based on the ideas of Horgan and Payne [5], [6], [8].

Spectral element discretization of the heat equation with variable diffusion coefficient

Y. Daikh, W. Chikouche (2016)

Commentationes Mathematicae Universitatis Carolinae

We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.

Currently displaying 641 – 660 of 920