A Cauchy Problem fo Analytic Functionals.
In questo lavoro si considera un’equazione alle derivate parziali del primo ordine con una condizione sulla frontiera di tipo integrale. Si studia resistenza, l'unicità e il comportamento asintotico delle soluzioni.
This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...
We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like where h is the mesh step. Such...
This note is motivated by [GGG], where an algorithm finding functions close to solutions of a given initial value-problem has been proposed (this algorithm has been recalled in Theorem 2.2). In this paper we present a commonly used definition and basic facts concerning B-spline functions and use them to improve the mentioned algorithm. This leads us to a better estimate of the Cauchy problem solution under some additional assumption on f appearing in the Cauchy problem. We also estimate the accuracy...