Estimations hölderiennes pour l'équation d'Euler
This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple considered in the setting of this paper is such that the embedding is only continuous.
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...