The search session has expired. Please query the service again.
We prove the --time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the --time decay estimates.
We consider the initial-value problem for a linear hyperbolic parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove time decay estimates for the solution of the associated linear Cauchy problem.
Dans le présent article, nous établissons une caractérisation des systèmes scalaires d’équations aux dérivées partielles analytiques d’ordre deux à variables indépendantes équivalents par un changement de coordonnées analytique au système , .
We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation for the initial data u₀(x) in the Besov space with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.
Currently displaying 1 –
20 of
21