Page 1

Displaying 1 – 14 of 14

Showing per page

Incompressible limit of a fluid-particle interaction model

Hongli Wang, Jianwei Yang (2021)

Applications of Mathematics

The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.

Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation

Jing Chen, Xian Hua Tang (2015)

Applications of Mathematics

We consider the existence of infinitely many solutions to the boundary value problem d d t 1 2 0 D t - β ( u ' ( t ) ) + 1 2 t D T - β ( u ' ( t ) ) + F ( t , u ( t ) ) = 0 a.e. t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 . Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.

Initial boundary value problems of the Degasperis-Procesi equation

Joachim Escher, Zhaoyang Yin (2008)

Banach Center Publications

We mainly study initial boundary value problems for the Degasperis-Procesi equation on the half line and on a compact interval. By the symmetry of the equation, we can convert these boundary value problems into Cauchy problems on the line and on the circle, respectively. Applying thus known results for the equation on the line and on the circle, we first obtain the local well-posedness of the initial boundary value problems. Then we present some blow-up and global existence results for strong solutions....

Interior estimates for solutions of Abreu's equation.

Simon K. Donaldson (2005)

Collectanea Mathematica

This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.

Invariants mesurant l'irrégularité en un point singulier des systèmes d'équations différentielles linéaires

R. Gérard, A. M. Levelt (1973)

Annales de l'institut Fourier

On définit des invariants entiers mesurant l’irrégularité d’un point singulier d’un système différentiel. Les propriétés de ces invariants, l’étude de la variation de l’ordre de la singularité par perturbation linéaire ainsi qu’une généralisation d’un théorème de W. Jurkat et D.A. Lutz permettent de donner une méthode de calcul de cet ordre.

Currently displaying 1 – 14 of 14

Page 1