Scattering, scattering inverse et équations d'évolutions non linéaires
A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
Étant donné un opérateur différentiel d’ordre sur un ouvert de , un compact de , et , nous montrons que toute solution de “ sur ” est solution de “ sur ” dès que la -capacité de est nulle. Cette condition s’avère nécessaire quand est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que où est une mesure de Radon bornée sur , a une solution si et seulement si ne charge pas les ensembles de -capacité nulle.
The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space for when the initial condition is not regular.
Dans cette note, nous prouvons l’existence de solutions indéfiniment différentiables d’un système de deux équations aux différences et appliquons la technique utilisée à l’étude des systèmes d’équations linéaires aux dérivées partielles.Dans chaque cas, on montre que les solutions sont les premières composantes des solutions d’un système matriciel que nous étudions.
We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class with respect to all variables.