Displaying 101 – 120 of 181

Showing per page

Nonlinear equations on Carnot groups and curvature problems for CR manifolds

Ermanno Lanconelli (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for C R manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the C R sphere and of the Levi-curvature equation for strictly pseudoconvex functions.

On hypoellipticity in 𝒢 .

Nedeljkov, M., Pilipović, S. (2002)

Bulletin. Classe des Sciences Mathématiques et Naturelles. Sciences Mathématiques

On hypoellipticity in g

M. Nedeljkov, S. Pilipović (2002)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for...

Currently displaying 101 – 120 of 181