Page 1

Displaying 1 – 12 of 12

Showing per page

Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing

Olga Drblíková (2007)

Kybernetika

This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient...

Unique global solvability of 1D Fried-Gurtin model

Zenon Kosowski (2007)

Applicationes Mathematicae

We investigate a 1-dimensional simple version of the Fried-Gurtin 3-dimensional model of isothermal phase transitions in solids. The model uses an order parameter to study solid-solid phase transitions. The free energy density has the Landau-Ginzburg form and depends on a strain, an order parameter and its gradient. The problem considered here has the form of a coupled system of one-dimensional elasticity and a relaxation law for a scalar order parameter. Under some physically justified assumptions...

Uniqueness and existence of solution in the BVt(Q) space to a doubly nonlinear parabolic problem.

Jesús Ildefonso Díaz, Juan Francisco Padial (1996)

Publicacions Matemàtiques

In this paper we present some results on the uniqueness and existence of a class of weak solutions (the so called BV solutions) of the Cauchy-Dirichlet problem associated to the doubly nonlinear diffusion equationb(u)t - div (|∇u - k(b(u))e|p-2 (∇u - k(b(u))e)) + g(x,u) = f(t,x).This problem arises in the study of some turbulent regimes: flows of incompressible turbulent fluids through porous media, gases flowing in pipelines, etc. The solvability of this problem is established in the BVt(Q) space....

Currently displaying 1 – 12 of 12

Page 1