Équations et Systèmes Non-Linéaires, Hyperboliques Non-Stricts.
We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.
We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...
We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...