The search session has expired. Please query the service again.
We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.
We study the representation theory of the solution space of the one-dimensional Schrödinger equation with singular potential V λ(x) = λx −2 as a representation of . The subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. By studying the subspace of K-finite vectors in this space, a distinguished family of potentials, parametrized by the triangular numbers is shown to generate a global representation of ⋉ H 3, where H...
Currently displaying 1 –
2 of
2