Page 1

Displaying 1 – 2 of 2

Showing per page

Global controllability and stabilization for the nonlinear Schrödinger equation on an interval

Camille Laurent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.

Global S L ( 2 , R ) ˜ representations of the Schrödinger equation with singular potential

Jose Franco (2012)

Open Mathematics

We study the representation theory of the solution space of the one-dimensional Schrödinger equation with singular potential V λ(x) = λx −2 as a representation of S L ( 2 , ) ˜ . The subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. By studying the subspace of K-finite vectors in this space, a distinguished family of potentials, parametrized by the triangular numbers is shown to generate a global representation of S L ( 2 , ) ˜ ⋉ H 3, where H...

Currently displaying 1 – 2 of 2

Page 1