-Estimates for linear elliptic systems with discontinuous coefficients
In this Note we give estimates for the highest order derivatives of an elliptic system in non-divergence form with coefficients in VMO.
In this Note we give estimates for the highest order derivatives of an elliptic system in non-divergence form with coefficients in VMO.
We prove an existence and uniqueness theorem for the Dirichlet problem for the equation in an open cube , when belongs to some , with close to 2. Here we assume that the coefficient belongs to the space BMO() of functions of bounded mean oscillation and verifies the condition for a.e. .
Desarrollamos una teoría general para la resolución de ecuaciones lineales de evolución de la forma ü + Au = μ sobre R+, donde -A es el generador infinitesimal de un semigrupo analítico fuertemente continuo y μ es una medida de Radón con valores en un espacio de Banach. Utilizamos la teoría de interpolación-extrapolación de espacios y el teorema de representación de Riesz para tales medidas.Los resultados abstractos son ilustrados mediante aplicaciones a problemas de valor inicial parabólicos de...
In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction...