Una equazione parabolica in teoria della combustione: problemi diretti ed inversi
We consider a conducting body which presents some (unknown) perfectly insulating defects, such as cracks or cavities, for instance. We perform measurements of current and voltage type on a (known) part of the boundary of the conductor. We prove that, even if the defects are unknown, the current and voltage measurements at the boundary uniquely determine the corresponding electrostatic potential inside the conductor. A corresponding stability result, related to the stability of Neumann problems with...
We consider the problem of localizing an inaccessible piece of the boundary of a conducting medium , and a cavity contained in , from boundary measurements on the accessible part of . Assuming that is the given thermal flux for , and that the corresponding output datum is the temperature measured at a given time for , we prove that and are uniquely localized from knowledge of all possible pairs of input-output data . The same result holds when a mean value of the temperature...
We consider the problem of localizing an inaccessible piece I of the boundary of a conducting medium Ω, and a cavity D contained in Ω, from boundary measurements on the accessible part A of ∂Ω. Assuming that g(t,σ) is the given thermal flux for (t,σ) ∈ (0,T) x A, and that the corresponding output datum is the temperature u(T0,σ) measured at a given time T0 for σ ∈ Aout ⊂ A, we prove that I and D are uniquely localized from knowledge of all possible pairs of input-output data . The same result...