Scattering, scattering inverse et équations d'évolutions non linéaires
Page 1 Next
Richard Beals, R. Coifman (1981)
Journées équations aux dérivées partielles
R. Beals, R. Coifman (1980/1981)
Séminaire Équations aux dérivées partielles (Polytechnique)
Qian, Zhi, Fu, Chu-Li, Xiong, Xiang-Tuan (2005)
International Journal of Mathematics and Mathematical Sciences
E. M. E. Zayed (2004)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Yang, Fenglin, Zhang, Chuanyi (2010)
Boundary Value Problems [electronic only]
Ladislav Hlavatý (1989)
Pokroky matematiky, fyziky a astronomie
Alekseev, G.V. (2001)
Sibirskij Matematicheskij Zhurnal
Kozhanov, A.I. (2005)
Sibirskij Matematicheskij Zhurnal
Yu Ping Wang, Shahrbanoo Akbarpoor Kiasary, Emrah Yılmaz (2024)
Applications of Mathematics
We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.
E.M.E. Zayed (1988)
Collectanea Mathematica
Pyatkov, S.G., Tsybikov, B.N. (2009)
Sibirskij Matematicheskij Zhurnal
F. Sacerdote, F. Sansò (1990)
Revista Matemática de la Universidad Complutense de Madrid
Two particular cases of the overdetermined gravimetry-gradiometry problem are discussed: (i) the case of a latitude-dependant statistical weight for gradiometric data, corresponding to a data distribution coming from satellite polar orbits, (ii) the case of a volume distribution, instead of a surface distribution, for satellite gradiometric data. In both cases a discussion of numerical methods for solving the problem with realistic data is started; for case (i), an analytic solution is found under...
Imed Feki, Ameni Massoudi (2024)
Czechoslovak Mathematical Journal
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces , where , and is either the open unit disk or the annular domain , of the complex space . More precisely, we study the behavior on the interior of of any function belonging to the unit ball of the Hardy-Sobolev spaces from its behavior on any open connected subset of the boundary of with respect to the -norm. Our results can be viewed as an improvement and generalization of those established...
Enrique Fernández-Cara, Thierry Horsin, Henry Kasumba (2013)
Annales mathématiques Blaise Pascal
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
A. Melin (1986/1987)
Séminaire Équations aux dérivées partielles (Polytechnique)
Anders Melin (1987)
Journées équations aux dérivées partielles
Hiroshi Isozaki (1989)
Journées équations aux dérivées partielles
Rolci Cipolatti, Carlos M. Motta, Nilson C. Roberty (2006)
Revista Matemática Complutense
In this paper we consider the inverse problem of recovering the total extinction coefficient and the collision kernel for the time-dependent Boltzmann equation via boundary measurements. We obtain stability estimates for the extinction coefficient in terms of the albedo operator and also an identification result for the collision kernel.
Jenn-Nan Wang (1999)
Annales de l'I.H.P. Physique théorique
A.G. Ramm (1991)
Journal für die reine und angewandte Mathematik
Page 1 Next