Le problème de Pompeiu
Let be one solution towith a non-homogeneous term , and , where is a bounded domain. We discuss an inverse problem of determining unknown functions by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for , . The proof is...
Let y(h)(t,x) be one solution to with a non-homogeneous term h, and , where is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for...