EDPS paraboliques à coefficients non—lipschitziens avec réflexion
The goal of this talk is to describe the Lamé operator which drives the propagation of linear elastic waves. The main motivation for me is the work I have done in collaboration with Michel Campillo’s group from LGIT (Grenoble) on passive imaging in seismology. From this work, several mathematical problems emerged: equipartition of energy between and waves, high frequency description of surface waves in a stratified medium and related inverse spectral problems.We discuss the following topics:What...
We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several...
We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several...
Soit un sous-différentiel (non coercif) dans un espace de Hilbert.On étudie l’existence de solutions bornées ou périodiques pour l’équationDeux solutions périodiques éventuelles diffèrent d’une constante. Si est périodique et compact, toute trajectoire bornée est asymptote pour à une trajectoire périodique.
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space ; of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces...
By means of a direct and constructive method based on the theory of semi-global C1 solution, the local exact boundary observability is established for one-dimensional first order quasilinear hyperbolic systems with general nonlinear boundary conditions. An implicit duality between the exact boundary controllability and the exact boundary observability is then shown in the quasilinear case.