Displaying 21 – 40 of 42

Showing per page

Global existence for functional semilinear integro-differential equations

Sotiris K. Ntouyas (1998)

Archivum Mathematicum

In this paper, we study the global existence of solutions for first and second order initial value problems for functional semilinear integrodifferential equations in Banach space, by using the Leray-Schauder Alternative or the Nonlinear Alternative for contractive maps.

Global existence of solutions of the free boundary problem for the equations of magnetohydrodynamic compressible fluid

Piotr Kacprzyk (2005)

Banach Center Publications

Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.

Global superconvergence of finite element methods for parabolic inverse problems

Hossein Azari, Shu Hua Zhang (2009)

Applications of Mathematics

In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.

Global well-posedness and blow up for the nonlinear fractional beam equations

Shouquan Ma, Guixiang Xu (2010)

Applicationes Mathematicae

We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.

Gradient potential estimates

Giuseppe Mingione (2011)

Journal of the European Mathematical Society

Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably rescaled),...

Currently displaying 21 – 40 of 42