Displaying 21 – 40 of 68

Showing per page

Periodic solutions of evolution problem associated with moving convex sets

Charles Castaing, Manuel D.P. Monteiro Marques (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form - D u N C ( t ) ( u ( t ) ) + f ( t , u ( t ) ) where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, N C ( t ) ( u ( t ) ) is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this...

Perron's method and the method of relaxed limits for "unbounded" PDE in Hilbert spaces

Djivede Kelome, Andrzej Święch (2006)

Studia Mathematica

We prove that Perron's method and the method of half-relaxed limits of Barles-Perthame works for the so called B-continuous viscosity solutions of a large class of fully nonlinear unbounded partial differential equations in Hilbert spaces. Perron's method extends the existence of B-continuous viscosity solutions to many new equations that are not of Bellman type. The method of half-relaxed limits allows limiting operations with viscosity solutions without any a priori estimates. Possible applications...

Perte de régularité pour les équations d’ondes sur-critiques

Gilles Lebeau (2005)

Bulletin de la Société Mathématique de France

On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans d , u + u p = 0 , p impair, avec d 3 et p > ( d + 2 ) / ( d - 2 ) , est mal posé dans H σ pour tout σ ] 1 , σ crit [ , où σ crit = d / 2 - 2 / ( p - 1 ) est l’exposant critique.

Phase transition with supercooling

A. Fasano (1998)

Bollettino dell'Unione Matematica Italiana

L'articolo riassume il quadro dei risultati noti circa il cosiddetto problema di Stefan con sopraraffreddamento. Con ciò si intende in senso lato l'estensione del modello di Stefan a quei casi in cui la temperatura della fase liquida (solida) non è confinata al di sopra (sotto) di quella di cambiamento di fase, supposta costante. La nostra discussione è prevalentemente rivolta allo sviluppo di singolarità (non limitatezza della velocità dell'interfaccia, ecc.), al modo di prevederle, di prevenirle...

Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points

Jan Malý (1996)

Commentationes Mathematicae Universitatis Carolinae

Let u be a weak solution of a quasilinear elliptic equation of the growth p with a measure right hand term μ . We estimate u ( z ) at an interior point z of the domain Ω , or an irregular boundary point z Ω , in terms of a norm of u , a nonlinear potential of μ and the Wiener integral of 𝐑 n Ω . This quantifies the result on necessity of the Wiener criterion.

Currently displaying 21 – 40 of 68