Displaying 621 – 640 of 1900

Showing per page

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise

Georgios T. Kossioris, Georgios E. Zouraris (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method...

Functional differential inequalities with unbounded delay

Z. Kamont, S. Kozieł (2006)

Annales Polonici Mathematici

Classical solutions of functional partial differential inequalities with initial boundary conditions are estimated by maximal solutions of suitable problems for ordinary functional differential equations. Uniqueness of solutions and continuous dependence on given functions are obtained as applications of the comparison result. A theorem on weak functional differential inequalities generated by mixed problems is proved. Our method is based on an axiomatic approach to equations with unbounded delay....

Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition

Yuriy Povstenko (2014)

Open Mathematics

The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective...

Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu, Nikolaos S. Papageorgiou (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.

Generalized Backscattering and the Lax-Phillips Transform

Melrose, Richard, Uhlmann, Gunther (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35P25, 35R30, 58J50.Using the free-space translation representation (modified Radon transform) of Lax and Phillips in odd dimensions, it is shown that the generalized backscattering transform (so outgoing angle w = Sq in terms of the incoming angle with S orthogonal and Id-S invertible) may be further restricted to give an entire, globally Fredholm, operator on appropriate Sobolev spaces of potentials with compact support. As a corollary we show that the...

Generalized Cauchy problems for hyperbolic functional differential systems

Elżbieta Puźniakowska-Gałuch (2014)

Annales Polonici Mathematici

A generalized Cauchy problem for hyperbolic functional differential systems is considered. The initial problem is transformed into a system of functional integral equations. The existence of solutions of this system is proved by using the method of successive approximations. Differentiability of solutions with respect to initial functions is proved. It is important that functional differential systems considered in this paper do not satisfy the Volterra condition.

Currently displaying 621 – 640 of 1900