Displaying 661 – 680 of 1901

Showing per page

Global existence of solutions of the free boundary problem for the equations of magnetohydrodynamic compressible fluid

Piotr Kacprzyk (2005)

Banach Center Publications

Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.

Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

Ramalingam Sriraman, Asha Nedunchezhiyan (2022)

Kybernetika

In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity...

Global superconvergence of finite element methods for parabolic inverse problems

Hossein Azari, Shu Hua Zhang (2009)

Applications of Mathematics

In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.

Global well-posedness and blow up for the nonlinear fractional beam equations

Shouquan Ma, Guixiang Xu (2010)

Applicationes Mathematicae

We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.

Gradient potential estimates

Giuseppe Mingione (2011)

Journal of the European Mathematical Society

Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably rescaled),...

Hamilton-Jacobi functional differential equations with unbounded delay

Adam Nadolski (2003)

Annales Polonici Mathematici

The Cauchy problem for nonlinear functional differential equations on the Haar pyramid is considered. The phase space for generalized solutions is constructed. An existence theorem is proved by using the method of successive approximations. The theory of characteristics and integral inequalities are used. Examples of phase spaces are given.

Hardy-Poincaré type inequalities derived from p-harmonic problems

Iwona Skrzypczak (2014)

Banach Center Publications

We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.

Currently displaying 661 – 680 of 1901