Some examples of hyperbolic equations without local solvability
Two particular cases of the overdetermined gravimetry-gradiometry problem are discussed: (i) the case of a latitude-dependant statistical weight for gradiometric data, corresponding to a data distribution coming from satellite polar orbits, (ii) the case of a volume distribution, instead of a surface distribution, for satellite gradiometric data. In both cases a discussion of numerical methods for solving the problem with realistic data is started; for case (i), an analytic solution is found under...
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces , where , and is either the open unit disk or the annular domain , of the complex space . More precisely, we study the behavior on the interior of of any function belonging to the unit ball of the Hardy-Sobolev spaces from its behavior on any open connected subset of the boundary of with respect to the -norm. Our results can be viewed as an improvement and generalization of those established...
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...
An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.
We study semilinear equations and inequalities of parabolic type with discontinuous nonlinearities, possibly subjected to convex or even nonconvex constraint conditions. To prove some existence theorems we regard the solutions as «curves of maximal relaxed slope» for a suitable functional on the given constraint.
In this survey we collect several results concerning S-type bifurcation curves for the number of solutions of reaction-diffusion stationary equations. In particular, we recall several results in the literature for the case of stationary energy balance models.
In questo articolo consideriamo alcune semplici equazioni a derivate parziali elittiche nonlineari, per le quali il Teorema della Funzione Inversa, se applicato in modo formale, suggerisce l'esistenza di soluzioni. Nonostante ciò, proviamo che non esistono soluzioni neppure in vari sensi deboli. Un problema modello è dato da in , su , dove , , è un dominio limitato contenente . Per qualunque costante , arbitrariamente piccola, proviamo che questo problema non ammette soluzioni distribuzionali...