Displaying 1321 – 1340 of 1901

Showing per page

Regularity of optimal shapes for the Dirichlet’s energy with volume constraint

Tanguy Briancon (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove some regularity results for the boundary of an open subset of d which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.

Regularity of optimal shapes for the Dirichlet's energy with volume constraint

Tanguy Briancon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove some regularity results for the boundary of an open subset of d which minimizes the Dirichlet's energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.

Regularity of solutions of the fractional porous medium flow

Luis Caffarelli, Fernando Soria, Juan Luis Vázquez (2013)

Journal of the European Mathematical Society

We study a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is u t = · ( u ( - Δ ) - s u ) , 0 < s < 1 . The problem is posed in { x n , t } with nonnegative initial data u ( x , 0 ) that are integrable and decay at infinity. A previous paper has established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation. As main results we establish the boundedness and C α regularity of such weak solutions. Finally, we extend the existence...

Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function

Ivan Hlaváček (1996)

Applications of Mathematics

Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.

Remarks on Carleman estimates and exact controllability of the Lamé system

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2002)

Journées équations aux dérivées partielles

In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.

Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés

Pierre Louis Lions (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra resistenza e l'unicità della soluzione del problema A u = f , u H 0 1 ( Ω ) nel caso in cui Ω è un aperto di n non limitato, A è un operatore variazionale ellittico del secondo ordine a coefficienti misurabili e limitati e f appartiene a H - 1 ( Ω ) .

Renormalized solution for nonlinear degenerate problems in the whole space

Mohamed Maliki, Adama Ouedraogo (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the general degenerate parabolic equation : u t - Δ b ( u ) + d i v F ˜ ( u ) = f in Q = ] 0 , T [ × N , T &gt; 0 . We suppose that the flux F ˜ is continuous, b is nondecreasing continuous and both functions are not necessarily Lipschitz. We prove the existence of the renormalized solution of the associated Cauchy problem for L 1 initial data and source term. We establish the uniqueness of this type of solution under a structure condition F ˜ ( r ) = F ( b ( r ) ) and an assumption on the modulus of continuity of b . The novelty of this work is that Ω = N , u 0 , f L 1 , b , F ˜ are not Lipschitz...

Currently displaying 1321 – 1340 of 1901