On the Chaplyghin method for generalized solutions of partial differential functional equations.
This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder's fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial...
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...
We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains converge to a solution of the same problem on a domain where is the limit of in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on .
We consider a one-dimensional incompressible flow through a porous medium undergoing deformations such that the porosity and the hydraulic conductivity can be considered to be functions of the flux intensity. The medium is initially dry and we neglect capillarity, so that a sharp wetting front proceeds into the medium. We consider the open problem of the continuation of the solution in the case of onset of singularities, which can be interpreted as a local collapse of the medium, in the general...
We are concerned with the problem of differentiability of the derivatives of order of solutions to the “nonlinear basic systems” of the type We are able to show that for and this result suggests that more regularity is not expectable.