Displaying 141 – 160 of 261

Showing per page

On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid

Ewa Zadrzyńska, Wojciech M. Zajączkowski (1996)

Annales Polonici Mathematici

We consider the motion of a viscous compressible heat conducting fluid in ℝ³ bounded by a free surface which is under constant exterior pressure. Assuming that the initial velocity is sufficiently small, the initial density and the initial temperature are close to constants, the external force, the heat sources and the heat flow vanish, we prove the existence of global-in-time solutions which satisfy, at any moment of time, the properties prescribed at the initial moment.

On the global maximum of the solution to a stochastic heat equation with compact-support initial data

Mohammud Foondun, Davar Khoshnevisan (2010)

Annales de l'I.H.P. Probabilités et statistiques

Consider a stochastic heat equation ∂tu=κ  ∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated...

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

On the local Cauchy problem for first order partial differential functional equations

Elżbieta Puźniakowska-Gałuch (2010)

Annales Polonici Mathematici

A theorem on the existence of weak solutions of the Cauchy problem for first order functional differential equations defined on the Haar pyramid is proved. The initial problem is transformed into a system of functional integral equations for the unknown function and for its partial derivatives with respect to spatial variables. The method of bicharacteristics and integral inequalities are applied. Differential equations with deviated variables and differential integral equations can be obtained...

On the local Cauchy problem for nonlinear hyperbolic functional differential equations

Tomasz Człapiński (1997)

Annales Polonici Mathematici

We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) D z ( x , y ) = f ( x , y , z ( x , y ) , ( W z ) ( x , y ) , D y z ( x , y ) ) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).

On the long-time behaviour of a class of parabolic SPDE’s : monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2005)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the long-time behaviour of a class of parabolic SPDE's: monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional Brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the mixed problem for hyperbolic partial differential-functional equations of the first order

Tomasz Człapiński (1999)

Czechoslovak Mathematical Journal

We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order D x z ( x , y ) = f ( x , y , z ( x , y ) , D y z ( x , y ) ) , where z ( x , y ) [ - τ , 0 ] × [ 0 , h ] is a function defined by z ( x , y ) ( t , s ) = z ( x + t , y + s ) , ( t , s ) [ - τ , 0 ] × [ 0 , h ] . Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.

On the mixed problem for quasilinear partial functional differential equations with unbounded delay

Tomasz Człapiński (1999)

Annales Polonici Mathematici

We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay D t z ( t , x ) = i = 1 n f i ( t , x , z ( t , x ) ) D x i z ( t , x ) + h ( t , x , z ( t , x ) ) , where z ( t , x ) X ̶ 0 is defined by z ( t , x ) ( τ , s ) = z ( t + τ , x + s ) , ( τ , s ) ( - , 0 ] × [ 0 , r ] , and the phase space X ̶ 0 satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.

On the Newton partially flat minimal resistance body type problems

M. Comte, Jesus Ildefonso Díaz (2005)

Journal of the European Mathematical Society

We study the flat region of stationary points of the functional Ω F ( | u ( x ) | ) d x under the constraint u M , where Ω is a bounded domain in 2 . Here F ( s ) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Ω is a ball. We also analyze some other qualitative properties. Moreover, we show the...

On the oscillation of some impulsive parabolic equations with several delays

R. Atmania, S. Mazouzi (2011)

Archivum Mathematicum

In this paper, several oscillation criteria are established for some nonlinear impulsive functional parabolic equations with several delays subject to boundary conditions. We shall mainly use the divergence theorem and some corresponding impulsive delayed differential inequalities.

Currently displaying 141 – 160 of 261