A blow up condition for a nonautonomous semilinear system.
Page 1 Next
Perez-Perez, Aroldo (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Sandra Lucente, Guido Ziliotti (1999)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We consider the equation , where is a first order pseudo-differential operator with real symbol . Under a suitable convexity assumption on we find the decay properties for . These can be applied to the linear Maxwell system in anisotropic media and to the nonlinear Cauchy Problem , . If is a smooth function which satisfies near , and is small in suitably Sobolev norm, we prove global existence theorems provided is greater than a critical exponent.
Umarov, Sabir, Saydamatov, Erkin (2006)
Fractional Calculus and Applied Analysis
Mathematics Subject Classification: 35CXX, 26A33, 35S10The well known Duhamel principle allows to reduce the Cauchy problem for linear inhomogeneous partial differential equations to the Cauchy problem for corresponding homogeneous equations. In the paper one of the possible generalizations of the classical Duhamel principle to the time-fractional pseudo-differential equations is established.* This work partially supported by NIH grant P20 GMO67594.
Anton Arnold, José L. López, Peter A. Markowich, Juan Soler (2004)
Revista Matemática Iberoamericana
The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck...
Jean-Michel Bony (2006/2007)
Séminaire Équations aux dérivées partielles
P. Pallu de La Barrière, P. Schapira (1975/1976)
Séminaire Équations aux dérivées partielles (Polytechnique)
Hayashi, Nakao, Kaikina, Elena I., Naumkin, Pavel I. (2004)
International Journal of Mathematics and Mathematical Sciences
B Buffoni (2004)
Annales de l'I.H.P. Analyse non linéaire
Rossella Agliardi (1990)
Rendiconti del Seminario Matematico della Università di Padova
Matthias Erbar (2014)
Annales de l'I.H.P. Probabilités et statistiques
We introduce a new transport distance between probability measures on that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...
Philip Brenner (1972)
Mathematica Scandinavica
Marc Višic (1974/1975)
Séminaire Jean Leray
Yujiro Ohya (1977)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Y. Ohya (1979/1980)
Séminaire Équations aux dérivées partielles (Polytechnique)
C. Wagschal (1978/1979)
Séminaire Équations aux dérivées partielles (Polytechnique)
Mohamed S. Baouendi, Charles Goulaouic (1977)
Journées équations aux dérivées partielles
W. Craig (1995/1996)
Séminaire Équations aux dérivées partielles (Polytechnique)
Guedda, Mohammed, Kirane, Mokhtar (2002)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Haouam, Kamel, Sfaxi, Mourad (2006)
International Journal of Mathematics and Mathematical Sciences
Cardiel, Rosa E., Kaikina, Elena I. (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Page 1 Next