Displaying 121 – 140 of 624

Showing per page

Domaine de la racine carrée de certains opérateurs différentiels accrétifs

Ronald R. Coifman, D. G. Deng, Yves Meyer (1983)

Annales de l'institut Fourier

Les racines carrées d’opérateurs différentiels accrétifs ont été définies et étudiées par Kato. Dans le cas d’opérateurs différentiels à coefficients C , les racines carrées sont des opérateurs pseudo-différentiels. Le cas des opérateurs différentiels à coefficients mesurables et bornés conduit à des racines carrées au-delà des opérateurs pseudo-différentiels. Ces nouveaux opérateurs s’étudient grâce à des mesures de Carleson.

Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Yu-long Deng, Zhi-tian Chen, Shun-chao Long (2021)

Czechoslovak Mathematical Journal

Let - ( n + 1 ) < m - ( n + 1 ) ( 1 - ρ ) and let T a ρ , δ m be pseudo-differential operators with symbols a ( x , ξ ) n × n , where 0 < ρ 1 , 0 δ < 1 and δ ρ . Let μ , λ be weights in Muckenhoupt classes A p , ν = ( μ λ - 1 ) 1 / p for some 1 < p < . We establish a two-weight inequality for commutators generated by pseudo-differential operators T a with weighted BMO functions b BMO ν , namely, the commutator [ b , T a ] is bounded from L p ( μ ) into L p ( λ ) . Furthermore, the range of m can be extended to the whole m - ( n + 1 ) ( 1 - ρ ) .

Dynamics of wave propagation and curvature of discriminants

Victor P. Palamodov (2000)

Annales de l'institut Fourier

For a Lagrange distribution of order zero we consider a quadratic integral which has logarithmic divergence at the singular locus of the distribution. The residue of the asymptotics is a Hermitian form evaluated in the space of positive distributions supported in the locus. An asymptotic analysis of the residue density is given in terms of the curvature form of the locus. We state a conservation law for the residue of the impulse-energy tensor of solutions of the wave equation which extends the...

Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations

Johannes Sjöstrand (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.

Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics

Michael Hitrik, Karel Pravda-Starov (2013)

Annales de l’institut Fourier

For a class of non-selfadjoint h –pseudodifferential operators with double characteristics, we give a precise description of the spectrum and establish accurate semiclassical resolvent estimates in a neighborhood of the origin. Specifically, assuming that the quadratic approximations of the principal symbol of the operator along the double characteristics enjoy a partial ellipticity property along a suitable subspace of the phase space, namely their singular space, we give a precise description of...

Équation des ondes amorties dans un domaine extérieur

Moez Khenissi (2003)

Bulletin de la Société Mathématique de France

On étudie la position des pôles de diffusion du problème de Dirichlet pour l’équation des ondes amorties du type t 2 - Δ + a ( x ) t dans un domaine extérieur. Sous la condition du « contrôle géométrique extérieur », on déduit alors le comportement des solutions en grand temps. On calcule en particulier le meilleur taux de décroissance de l’énergie locale en dimension impaire d’espace.

Currently displaying 121 – 140 of 624