Extrapolation Methods for Spline Collocation Solutions of Pseudodifferential Equations on Curves.
In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if and are symbols in such that , then for all we have the estimate for all in the Schwartz space, where is the usual norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.
Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.Wentzell boundary value problem for pseudo-differential operators generating Markov processes but not satisfying the transmission condition are not well understood. Studying fractional derivatives and fractional powers of such operators gives some insights in this problem. Since an L^p – theory for such operators will provide a helpful tool we investigate the L^p –domains of certain model operators.* This work is partially supported...
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class , , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.