Displaying 161 – 180 of 624

Showing per page

Fefferman's SAK principle in one dimension

Frédéric Hérau (2000)

Annales de l'institut Fourier

In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if a and b are symbols in S 1 , 0 2 such that | a | b , then for all ϵ > 0 we have the estimate a w u s 2 C ϵ ( b w u s 2 + u s + ϵ 2 ) for all u in the Schwartz space, where t is the usual H t norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.

Fractional Derivatives and Fractional Powers as Tools in Understanding Wentzell Boundary Value Problems for Pseudo-Differential Operators Generating Markov Processes

Jacob, N., Knopova, V. (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.Wentzell boundary value problem for pseudo-differential operators generating Markov processes but not satisfying the transmission condition are not well understood. Studying fractional derivatives and fractional powers of such operators gives some insights in this problem. Since an L^p – theory for such operators will provide a helpful tool we investigate the L^p –domains of certain model operators.* This work is partially supported...

From pseudodifferential analysis to modular form theory

André Unterberger (1999)

Journées équations aux dérivées partielles

Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.

Currently displaying 161 – 180 of 624