On the number of places of convergence for Newton’s method over number fields
Let be a polynomial of degree at least 2 with coefficients in a number field , let be a sufficiently general element of , and let be a root of . We give precise conditions under which Newton iteration, started at the point , converges -adically to the root for infinitely many places of . As a corollary we show that if is irreducible over of degree at least 3, then Newton iteration converges -adically to any given root of for infinitely many places . We also conjecture that...