Previous Page 7

Displaying 121 – 130 of 130

Showing per page

From Newton's method to exotic basins Part II: Bifurcation of the Mandelbrot-like sets

Krzysztof Barański (2001)

Fundamenta Mathematicae

This is a continuation of the work [Ba] dealing with the family of all cubic rational maps with two supersinks. We prove the existence of the following parabolic bifurcation of Mandelbrot-like sets in the parameter space of this family. Starting from a Mandelbrot-like set in cubic Newton maps and changing parameters in a continuous way, we construct a path of Mandelbrot-like sets ending in the family of parabolic maps with a fixed point of multiplier 1. Then it bifurcates into two paths of Mandelbrot-like...

Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems

S. Bezuglyi, K. Medynets (2008)

Colloquium Mathematicae

We consider the full group [φ] and topological full group [[φ]] of a Cantor minimal system (X,φ). We prove that the commutator subgroups D([φ]) and D([[φ]]) are simple and show that the groups D([φ]) and D([[φ]]) completely determine the class of orbit equivalence and flip conjugacy of φ, respectively. These results improve the classification found in [GPS]. As a corollary of the technique used, we establish the fact that φ can be written as a product of three involutions from [φ].

Currently displaying 121 – 130 of 130

Previous Page 7