Displaying 61 – 80 of 85

Showing per page

On the distribution of free path lengths for the periodic Lorentz gas II

François Golse, Bernt Wennberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Consider the domain Z ϵ = { x n ; d i s t ( x , ϵ n ) > ϵ γ } and let the free path length be defined as τ ϵ ( x , v ) = inf { t > 0 ; x - t v Z ϵ } . In the Boltzmann-Grad scaling corresponding to γ = n n - 1 , it is shown that the limiting distribution φ ϵ of τ ϵ is bounded from below by an expression of the form C/t, for some C> 0. A numerical study seems to indicate that asymptotically for large t, φ ϵ C / t . This is an extension of a previous work [J. Bourgain et al., Comm. Math. Phys.190 (1998) 491-508]. As a consequence, it is proved that the linear Boltzmann type transport equation is inappropriate...

On univoque points for self-similar sets

Simon Baker, Karma Dajani, Kan Jiang (2015)

Fundamenta Mathematicae

Let K ⊆ ℝ be the unique attractor of an iterated function system. We consider the case where K is an interval and study those elements of K with a unique coding. We prove under mild conditions that the set of points with a unique coding can be identified with a subshift of finite type. As a consequence, we can show that the set of points with a unique coding is a graph-directed self-similar set in the sense of Mauldin and Williams (1988). The theory of Mauldin and Williams then provides a method...

Orderings of the rationals and dynamical systems

Claudio Bonanno, Stefano Isola (2009)

Colloquium Mathematicae

This paper is devoted to a systematic study of a class of binary trees encoding the structure of rational numbers both from arithmetic and dynamical point of view. The paper is divided into three parts. The first one is mainly expository and consists in a critical review of rather standard topics such as Stern-Brocot and Farey trees and their connections with continued fraction expansion and the question mark function. In the second part we introduce two classes of (invertible and non-invertible)...

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

Progressions arithmétiques dans les nombres premiers

Bernard Host (2004/2005)

Séminaire Bourbaki

Récemment, B. Green et T. Tao ont montré que : l’ensemble des nombres premiers contient des progressions arithmétiques de toutes longueurs répondant ainsi à une question ancienne à la formulation particulièrement simple. La démonstration n’utilise aucune des méthodes “transcendantes” ni aucun des grands théorèmes de la théorie analytique des nombres. Elle est écrite dans un esprit proche de celui de la théorie ergodique, en particulier de celui de la preuve par Furstenberg du théorème de Szemerédi,...

Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci

Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)

Journal de théorie des nombres de Bordeaux

Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore 𝕋 2 qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de 𝕋 2 : nous montrons, que pour une norme adaptée, la suite...

Sets of β -expansions and the Hausdorff measure of slices through fractals

Tom Kempton (2016)

Journal of the European Mathematical Society

We study natural measures on sets of β -expansions and on slices through self similar sets. In the setting of β -expansions, these allow us to better understand the measure of maximal entropy for the random β -transformation and to reinterpret a result of Lindenstrauss, Peres and Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff measure by slicing, leading...

Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle

Sophie Grivaux, Maria Roginskaya (2013)

Czechoslovak Mathematical Journal

We study recurrence and non-recurrence sets for dynamical systems on compact spaces, in particular for products of rotations on the unit circle 𝕋 . A set of integers is called r -Bohr if it is recurrent for all products of r rotations on 𝕋 , and Bohr if it is recurrent for all products of rotations on 𝕋 . It is a result due to Katznelson that for each r 1 there exist sets of integers which are r -Bohr but not ( r + 1 ) -Bohr. We present new examples of r -Bohr sets which are not Bohr, thanks to a construction which...

Symbolic discrepancy and self-similar dynamics

Boris Adamczewski (2004)

Annales de l'Institut Fourier

We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.

Currently displaying 61 – 80 of 85