Displaying 81 – 100 of 221

Showing per page

Invariant densities for C¹ maps

Anthony Quas (1996)

Studia Mathematica

We consider the set of C 1 expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of C 1 expanding maps with the C 1 topology. This is in contrast with results for C 2 or C 1 + ε maps, where the invariant densities can be shown to be continuous.

Invariant measures and the compactness of the domain

Marian Jabłoński, Paweł Góra (1998)

Annales Polonici Mathematici

We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation V [ 0 , x ] ( 1 / | τ ' | ) which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.

Jordan tori and polynomial endomorphisms in 2

Manfred Denker, Stefan Heinemann (1998)

Fundamenta Mathematicae

For a class of quadratic polynomial endomorphisms f : 2 2 close to the standard torus map ( x , y ) ( x 2 , y 2 ) , we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

Currently displaying 81 – 100 of 221