Displaying 101 – 120 of 221

Showing per page

Locally equicontinuous dynamical systems

Eli Glasner, Benjamin Weiss (2000)

Colloquium Mathematicae

A new class of dynamical systems is defined, the class of “locally equicontinuous systems” (LE). We show that the property LE is inherited by factors as well as subsystems, and is closed under the operations of pointed products and inverse limits. In other words, the locally equicontinuous functions in l ( ) form a uniformly closed translation invariant subalgebra. We show that WAP ⊂ LE ⊂ AE, where WAP is the class of weakly almost periodic systems and AE the class of almost equicontinuous systems....

Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms

S. Siboni (1998)

Bollettino dell'Unione Matematica Italiana

Viene considerata una classe di sistemi dinamici del toro bidimensionale T 2 . Tali sistemi presentano la forma di un prodotto skew fra l'endomorfismo Bernoulli B p x = mod p x , 1 , p Z - 1 , 0 , 1 , definito sul toro undidimensionale T 1 0 , 1 ed una traslazione del toro stesso. Si dimostra che gli esponenti di Liapunov e l'entropia di Kolmogorov-Sinai della misura di Haar invariante possono essere calcolati esplicitamente. Viene infine discusso il decadimento delle correlazioni per i caratteri.

On a certain map of a triangle

Grzegorz Świrszcz (1998)

Fundamenta Mathematicae

The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = u,v ≥ 0: u+v ≤ 4. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ v=0 form a dense subset F - n ( I ) of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Currently displaying 101 – 120 of 221