Displaying 161 – 180 of 791

Showing per page

Digits and continuants in euclidean algorithms. Ergodic versus tauberian theorems

Brigitte Vallée (2000)

Journal de théorie des nombres de Bordeaux

We obtain new results regarding the precise average-case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the average-case complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide...

Dimension of countable intersections of some sets arising in expansions in non-integer bases

David Färm, Tomas Persson, Jörg Schmeling (2010)

Fundamenta Mathematicae

We consider expansions of real numbers in non-integer bases. These expansions are generated by β-shifts. We prove that some sets arising in metric number theory have the countable intersection property. This allows us to consider sets of reals that have common properties in a countable number of different (non-integer) bases. Some of the results are new even for integer bases.

Dimension of measures: the probabilistic approach.

Yanick Heurteaux (2007)

Publicacions Matemàtiques

Various tools can be used to calculate or estimate the dimension of measures. Using a probabilistic interpretation, we propose very simple proofs for the main inequalities related to this notion. We also discuss the case of quasi-Bernoulli measures and point out the deep link existing between the calculation of the dimension of auxiliary measures and the multifractal analysis.

Disjointness of the convolutionsfor Chacon's automorphism

A. Prikhod'ko, V. Ryzhikov (2000)

Colloquium Mathematicum

The purpose of this paper is to show that if σ is the maximal spectral type of Chacon’s transformation, then for any d ≠ d’ we have σ * d σ * d ' . First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s automorphism belongs to this class.

Disjointness properties for Cartesian products of weakly mixing systems

Joanna Kułaga-Przymus, François Parreau (2012)

Colloquium Mathematicae

For n ≥ 1 we consider the class JP(n) of dynamical systems each of whose ergodic joinings with a Cartesian product of k weakly mixing automorphisms (k ≥ n) can be represented as the independent extension of a joining of the system with only n coordinate factors. For n ≥ 2 we show that, whenever the maximal spectral type of a weakly mixing automorphism T is singular with respect to the convolution of any n continuous measures, i.e. T has the so-called convolution singularity property of order n,...

Dispersing cocycles and mixing flows under functions

Klaus Schmidt (2002)

Fundamenta Mathematicae

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This result...

Dynamical attraction to stable processes

Albert M. Fisher, Marina Talet (2012)

Annales de l'I.H.P. Probabilités et statistiques

We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly...

Dynamical directions in numeration

Guy Barat, Valérie Berthé, Pierre Liardet, Jörg Thuswaldner (2006)

Annales de l’institut Fourier

This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β -numeration and its generalisations, abstract numeration systems and...

Currently displaying 161 – 180 of 791