Previous Page 5

Displaying 81 – 90 of 90

Showing per page

On time reparametrizations and isomorphisms of impulsive dynamical systems

Krzysztof Ciesielski (2004)

Annales Polonici Mathematici

We prove that for a given impulsive dynamical system there exists an isomorphism of the basic dynamical system such that in the new system equipped with the same impulse function each impulsive trajectory is global, i.e. the resulting dynamics is defined for all positive times. We also prove that for a given impulsive system it is possible to change the topology in the phase space so that we may consider the system as a semidynamical system (without impulses).

On top spaces.

Molaei, M.R., Khadekar, G.S., Farhangdost, M.R. (2006)

Balkan Journal of Geometry and its Applications (BJGA)

On two possible constructions of the quantum semigroup of all quantum permutations of an infinite countable set

Debashish Goswami, Adam Skalski (2012)

Banach Center Publications

Two different models for a Hopf-von Neumann algebra of bounded functions on the quantum semigroup of all (quantum) permutations of infinitely many elements are proposed, one based on projective limits of enveloping von Neumann algebras related to finite quantum permutation groups, and the second on a universal property with respect to infinite magic unitaries.

On two recurrence problems

Michael Boshernitzan, Eli Glasner (2009)

Fundamenta Mathematicae

We review some aspects of recurrence in topological dynamics and focus on two open problems. The first is an old one concerning the relation between Poincaré and Birkhoff recurrence; the second, due to the first author, is about moving recurrence. We provide a partial answer to a topological version of the moving recurrence problem.

Orbit equivalence and Kakutani equivalence with Sturmian subshifts

P. Dartnell, F. Durand, A. Maass (2000)

Studia Mathematica

Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.

Ordered group invariants for one-dimensional spaces

Inhyeop Yi (2001)

Fundamenta Mathematicae

We show that the Bruschlinsky group with the winding order is a homomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.

Ordered K-theoryand minimal symbolic dynamical systems

Christian Skau (2000)

Colloquium Mathematicae

Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.

Currently displaying 81 – 90 of 90

Previous Page 5