Displaying 221 – 240 of 952

Showing per page

Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems

Massimiliano Berti, Philippe Bolle (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.

Dimension of a measure

Pertti Mattila, Manuel Morán, José-Manuel Rey (2000)

Studia Mathematica

We propose a framework to define dimensions of Borel measures in a metric space by formulating a set of natural properties for a measure-dimension mapping, namely monotonicity, bi-Lipschitz invariance, (σ-)stability, etc. We study the behaviour of most popular definitions of measure dimensions in regard to our list, with special attention to the standard correlation dimensions and their modified versions.

Dimension of countable intersections of some sets arising in expansions in non-integer bases

David Färm, Tomas Persson, Jörg Schmeling (2010)

Fundamenta Mathematicae

We consider expansions of real numbers in non-integer bases. These expansions are generated by β-shifts. We prove that some sets arising in metric number theory have the countable intersection property. This allows us to consider sets of reals that have common properties in a countable number of different (non-integer) bases. Some of the results are new even for integer bases.

Dimension of weakly expanding points for quadratic maps

Samuel Senti (2003)

Bulletin de la Société Mathématique de France

For the real quadratic map P a ( x ) = x 2 + a and a given ϵ > 0 a point x has good expansion properties if any interval containing x also contains a neighborhood  J of x with P a n | J univalent, with bounded distortion and B ( 0 , ϵ ) P a n ( J ) for some n . The ϵ -weakly expanding set is the set of points which do not have good expansion properties. Let α denote the negative fixed point and M the first return time of the critical orbit to [ α , - α ] . We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff dimension of...

Distortion bounds for C 2 + η unimodal maps

Mike Todd (2007)

Fundamenta Mathematicae

We obtain estimates for derivative and cross-ratio distortion for C 2 + η (any η > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-like” condition. For two intervals J ⊂ T, the cross-ratio is defined as the value B(T,J): = (|T| |J|)/(|L| |R|) where L,R are the left and right connected components of T∖J respectively. For an interval map g such that g T : T is a diffeomorphism, we consider the cross-ratio distortion to be B(g,T,J): = B(g(T),g(J))/B(T,J). We prove that for...

Does a billiard orbit determine its (polygonal) table?

Jozef Bobok, Serge Troubetzkoy (2011)

Fundamenta Mathematicae

We introduce a new equivalence relation on the set of all polygonal billiards. We say that two billiards (or polygons) are order equivalent if each of the billiards has an orbit whose footpoints are dense in the boundary and the two sequences of footpoints of these orbits have the same combinatorial order. We study this equivalence relation under additional regularity conditions on the orbit.

Currently displaying 221 – 240 of 952