Displaying 121 – 140 of 952

Showing per page

Billiard complexity in the hypercube

Nicolas Bedaride, Pascal Hubert (2007)

Annales de l’institut Fourier

We consider the billiard map in the hypercube of d . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that n 3 d - 3 is the order of magnitude of the complexity.

Bistable traveling waves for monotone semiflows with applications

Jian Fang, Xiao-Qiang Zhao (2015)

Journal of the European Mathematical Society

This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.

Bitwisted Burnside-Frobenius theorem and Dehn conjugacy problem

Alexander Fel'shtyn (2009)

Banach Center Publications

It is proved for Abelian groups that the Reidemeister coincidence number of two endomorphisms ϕ and ψ is equal to the number of coincidence points of ϕ̂ and ψ̂ on the unitary dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

C 1 self-maps on closed manifolds with finitely many periodic points all of them hyperbolic

Jaume Llibre, Víctor F. Sirvent (2016)

Mathematica Bohemica

Let X be a connected closed manifold and f a self-map on X . We say that f is almost quasi-unipotent if every eigenvalue λ of the map f * k (the induced map on the k -th homology group of X ) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of λ as eigenvalue of all the maps f * k with k odd is equal to the sum of the multiplicities of λ as eigenvalue of all the maps f * k with k even. We prove that if f is C 1 having finitely many periodic points all of them hyperbolic,...

C¹ stability of endomorphisms on two-dimensional manifolds

J. Iglesias, A. Portela, A. Rovella (2012)

Fundamenta Mathematicae

A set of necessary conditions for C¹ stability of noninvertible maps is presented. It is proved that the conditions are sufficient for C¹ stability in compact oriented manifolds of dimension two. An example given by F. Przytycki in 1977 is shown to satisfy these conditions. It is the first example known of a C¹ stable map (noninvertible and nonexpanding) in a manifold of dimension two, while a wide class of examples are already known in every other dimension.

C¹ stable maps: examples without saddles

J. Iglesias, A. Portela, A. Rovella (2010)

Fundamenta Mathematicae

We give here the first examples of C¹ structurally stable maps on manifolds of dimension greater than two that are neither diffeomorphisms nor expanding. It is shown that an Axiom A endomorphism all of whose basic pieces are expanding or attracting is C¹ stable. A necessary condition for the existence of such examples is also given.

C¹-maps having hyperbolic periodic points

N. Aoki, Kazumine Moriyasu, N. Sumi (2001)

Fundamenta Mathematicae

We show that the C¹-interior of the set of maps satisfying the following conditions: (i) periodic points are hyperbolic, (ii) singular points belonging to the nonwandering set are sinks, coincides with the set of Axiom A maps having the no cycle property.

C¹-Stably Positively Expansive Maps

Kazuhiro Sakai (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

The notion of C¹-stably positively expansive differentiable maps on closed C manifolds is introduced, and it is proved that a differentiable map f is C¹-stably positively expansive if and only if f is expanding. Furthermore, for such maps, the ε-time dependent stability is shown. As a result, every expanding map is ε-time dependent stable.

Currently displaying 121 – 140 of 952