Frequency locking on the boundary of the barycentre set.
Let be a disjoint iteration group on the unit circle , that is a family of homeomorphisms such that for , and each either is the identity mapping or has no fixed point ( is a -divisible nontrivial Abelian group). Denote by the set of all cluster points of , for . In this paper we give a general construction of disjoint iteration groups for which .
Let be a probability measure on which is invariant and ergodic for , and . Let be a local diffeomorphism on some open set. We show that if and , then at -a.e. point . In particular, if is a piecewise-analytic map preserving then there is an open -invariant set containing supp such that is piecewise-linear with slopes which are rational powers of . In a similar vein, for as above, if is another integer and are not powers of a common integer, and if is a -invariant...
We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.
We investigate the symbolic dynamics for the double standard maps of the circle onto itself, given by , where b = 1 and a is a real parameter, 0 ≤ a < 1.
On démontre le lemme de Mañé-Conze-Guivarc’h (en classe Lipschitz) pour les systèmes amphidynamiques vérifiant une certaine condition d’hyperbolicité : la « rectifiabilité ». Diverses applications sont données.
Etant donné irrationnel de type constant, nous donnons des conditions explicites et génériques sur les pentes d’un homéomorphisme affine par morceaux du cercle de nombre de rotation , qui garantissent que la mesure de probabilité -invariante est singulière par rapport à la mesure de Haar. Cet article contient une preuve élémentaire d’un résultat de E. Ghys et V. Sergiescu : ”le nombre de rotation d’un homéomorphisme dyadique est rationnel”. Nous y étudions aussi le ratio set des homéomorphismes...
In this paper, recent results on the existence and uniqueness of (continuous and homeomorphic) solutions φ of the equation φ ∘ f = g ∘ φ (f and g are given self-maps of an interval or the circle) are surveyed. Some applications of these results as well as the outcomes concerning systems of such equations are also presented.
We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...
We show that for a finitely generated group of C² circle diffeomorphisms, the entropy of the action equals the entropy of the restriction of the action to the non-wandering set.