The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in , n ≥ 1, is a σ-limit set for some continuous map.
On appelle échange d’intervalles l’application qui consiste à réordonner les intervalles d’une partition de suivant une permutation donnée. Dans le cas des partitions en trois intervalles, nous donnons une caractérisation combinatoire des suites codant, d’après la partition définissant l’échange, l’orbite d’un point de sous l’action de cette transformation.
In this paper we address the following question due to Marcy Barge: For what f:I → I is it the case that the inverse limit of I with single bonding map f can be embedded in the plane so that the shift homeomorphism extends to a diffeomorphism ([BB, Problem 1.5], [BK, Problem 3])? This question could also be phrased as follows: Given a map f:I → I, find a diffeomorphism so that F restricted to its full attracting set, , is topologically conjugate to . In this situation, we say that the inverse...
Let f be a continuous map of the circle or the interval I into itself, piecewise , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least periodic points of period with large derivative along the period, for some subsequence of natural numbers. For a strictly monotone map f without critical points we show the existence of at least such points.
Currently displaying 1 –
6 of
6